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1 Introduction

We present an identification benchmark dataset for a full robot movement with a KUKA KR300 R2500 ultra
SE industrial robot (Fig. 1, left side). It is a robot with a nominal payload capacity of 300 kg, a weight of 1120 kg
and a reach of 2500mm. It exhibits 12 states accounting for position and velocity for each of the 6 joints. The
robot encounters backlash in all joints, pose-dependent inertia, pose-dependent gravitational loads, pose-dependent
hydraulic forces, pose- and velocity-dependent centripetal and Coriolis forces as well as nonlinear friction, which
is temperature-dependent and therefore potentially time-varying. As a reference to the nonlinear effects to be
expected for this benchmark, a nonlinear robot model is presented in appendix A.

Although the robot mechanics are unmodified, the robot is driven by a custom-made controller based on
hardware by the industrial supplier B&R automation [3–5] (Fig. 1, right side). This allows us comprehensive
system access. Therefore, we are able to provide additional information about the dynamical behavior of the
robot and the controller implementation. Hardware configuration and basic functionality were quickly realized.
However, robot modelling, more advanced control approaches and network distributed computing were enabled
by a joint collaboration of 25 researchers, technicians and students. Details on the contributions of each person are
given in the appendix B. The robot configuration as well as an additional explanation of hardware and software is
specified in the appendix C.

This work is structured as follows. The design of experiments and the data is presented in section 2. The
applications related to forward and inverse identification are discussed in section 3. For comparable results on this
benchmark, instructions on the metrics and figures of merit are given in section 4. In section 5 the figures of merit
are given for a linear baseline trained on the data.
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Figure 1: Industrial robot KUKA KR300 R2500 ultra SE with custom-made controller based on B&R components.

Table 1: File Overview

File Name Type Content

Robot_Identification_Benchmark_Description pdf This text document.

Robot_Identification_Benchmark_Without_Raw_Data rar Two mat-files, which contain the training and test
data for forward and inverse black-box identification.

Robot_Identification_Benchmark_With_Raw_Data rar Mat-files with additional data of all experiments
in high-frequency. MATLAB scripts used for data
post-processing and baseline estimation.

Robot_Identification_Benchmark_Videos rar Videos of every experiment. Video timestamp
corresponds to the raw data timestamp.
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2 Dataset

2.1 Design of Experiments

The experiments are designed as 36 different trajectories with a duration of 60.6 s each. All movements start
and end in homing position (see Fig. 1), so the data can be combined and shuffled in any order. Each trajectory is
executed twice so that repeatability is explicitly tested. All in all, we have 2 · 36 · 60.6 s ≈ 73min of data, 67min

for training and 6min for testing. In addition to the data, each experiment is recorded as a video.
The design of experiments for each trajectory is formulated as an optimization problem to incorporate all

physical constraints such as position, velocity, acceleration, and jerk limits. We design a joint position reference
trajectory, based on which the input, i.e., the motor feedforward and feedback torque, is computed at run-time.
Each trajectory is formulated as the sum of sine and cosine functions to ensure continuous differentiability.
Furthermore, optimizing for the sine and cosine coefficients A ∈ RV×N , B ∈ RV×N reduces the number of
optimization variables compared to a discrete-time formulation by multiple orders of magnitude. The sum of sine
and cosine functions is defined as

qn(k) =

V∑
v=1

(
Av,n

ωv
sin(ωvk)− Bv,n

ωv
cos(ωvk)

)
(1)

with a base frequency ω ∈ R, a number of v ∈ [1, .., V ] sine and cosine functions, and k ∈ [1, ..,K] discrete time
steps for each joint n ∈ [1, ..., N ].

In contrast to previous works [12], we do not optimize the experiment with respect to the condition number.
Although this criterion greatly improves the measurement information quality, i.e. by ensuring that all model
parameters are excited sufficiently, the condition number is still amodel-dependent criterion. As this is a benchmark
problem for nonlinear black-box identification, we decided against using model knowledge for the design of
experiments. Instead, we rely on general design criteria, such as coverage of state-space, compliance with input
and output limitations, and consideration of the frequency spectrum.

We set V = 10 coefficients for each frequency and K = 60 equally spaced time steps for computing the
sine and cosine coefficients. The frequency grid in the design of experiments ranges from the base frequency
ω = 1/60 ≈ 0.0166Hz to a maximum frequency of 1Hz (compare with Fig. 6). The sample rate∆t = tk+1 − tk

and therefore the number of time stepsK vary depending on the task, as the trajectory time remains unchanged at
tK = 60.6 s. For estimating the sine and cosine coefficients, we set∆t ≈ 1 s,K = 60 for a fast computation. For
the high-frequency reference trajectory we set ∆t = 4ms,K = 15147 to match the feedback controller.

The optimization problem is implemented in MATLAB using CasADi with the IPopt solver [2, 10]. The
optimization problem is given by

A∗,B∗ = argmin
A,B

J(qk) (2a)

s.t. q
(m)
lb,k ≤ q

(m)
k ≤ q

(m)
ub,k ∀k ∈ [1, 2, ...,K], ∀m ∈ {0, 1, 2, 3} (2b)

q
(m)
k = 0, ∀k ∈ {1,K},∀m ∈ {0, 1, 2, 3} (2c)

with the joint upper and lower joints limits q(m)
ub,k, q

(m)
lb,k for each time step k and each derivative m. The applied

objective criterion is empty, i.e. J(·) = 0. The optimizer mainly ensures that all trajectory derivatives start and
end at zero (2c). Each new trajectory is different as the initial values of the sine and cosine coefficients are created
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randomly.1
The first constraint (2b) ensures that limits of the trajectory including the first 3 derivatives (velocity, accel-

eration, and jerk) are ensured for all time steps k. The second constraint (2c) ensures that all derivatives are zero
at the start and the end of each trajectory. Choosing the same initial and final pose for all experiments is optional,
yet it ensures that the data can be shuffled and combined without the loss of physical feasibility.

2.2 Post Processing

For the identification benchmark, we summarized the trajectories to a single input/output dataset. The original
data is still provided for researchers, containing unfiltered, high-frequency measurements in a sample time of 4ms

with additional data, such as the reference trajectory and velocity measurements. In order to keep the benchmark
comparable, please state clearly if this additional information is accessed for model training.

As post-processing the original measurements are filtered and re-sampled to 100ms as presented in listing 1.
The combined training data consists of 33 different trajectories, each executed twice, connected to 67min and
39988 time steps. The test trajectory is independent and shorter, i.e. 3 trajectories, executed twice, 6min, 3636
time steps so that more details are visible in time series test figures.

Listing 1: Data Filtering.

1 % define filter

2 dt_data = 0.004;

3 filter_design = designfilt(’lowpassiir ’, ’FilterOrder ’, 4, ...

4 ’PassbandFrequency ’, 2, ’PassbandRipple ’, 0.2 ,...

5 ’SampleRate ’, 1/ dt_data);

6

7 % apply filtering

8 u = filtfilt(filter_design , u’) ’;

9 y = filtfilt(filter_design , y’) ’;

10

11 % reduce from 4 ms to 100 ms

12 n_step = 25;

13 u = u(:, 1: n_step:end);

14 y = y(:, 1: n_step:end);

The measured post-processed motor torques in Nm (including both feedforward and feedback control) are
presented in Fig. 2 for the test dataset. Each row corresponds to a single joint. More precisely, we measure the
actual motor winding currents and estimate the corresponding torques using the motor torque constant. The joint
positions in deg are shown in Fig. 3 for the test data. The training data is presented in Fig. 4 and Fig. 5 respectively.
Layout and units are analog to the test data.

1We tested different objective criteria, such as maximizing velocity or acceleration, i.e. J(qk) =
∑K

k=1 q̇
2
k , or a following discontinuous

reference, i.e. J(qk) =
∑K

k=1(qk−qR,k)
2. It is actually easier, to identify a robot model in the high-velocity range only, as some stationary

nonlinear effects can almost be omitted. Preliminary examinations revealed that the empty objective function captures both stationary and
high-velocity effects well.
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Figure 2: Measured motor torques in Nm as test data. Each row corresponds to one joint.
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Figure 3: Measured joint positions in deg as test data. Each row corresponds to one joint.
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Figure 4: Measured motor torques in Nm as training data. Each row corresponds to one joint.
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Figure 5: Measured joint positions in deg as training data. Each row corresponds to one joint.

The robot is not built for high-frequency applications. Although the robot feedback controllers react very
fast (position control 1250Hz, velocity control 2500Hz and current control 20 kHz), high-frequency trajectories
would be absorbed by gearbox effects, such as high gearbox ratios, considerable elasticity, and backlash. In other
words, as the electrical input energy is limited, we can either generate high amplitudes (which is done) or high
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frequencies (which would be internally absorbed anyway). Due to these actuation limitations, we restricted the
relevant joint position frequency spectrum to less than 0.3Hz to enable a sufficient state-space coverage. As a
result, the data can be low pass filtered with a cutoff frequency of 2Hz (see listing 1). The frequency spectrum of
the training input and training output data is presented in Fig. 6.

0 0.5 1 1.5
−50

−40

−30

−20

−10

0

10

20

30

Freqency (Hz)

Po
w

er
Sp

ec
tru

m
(d

B)

0 0.5 1 1.5
−100

−80

−60

−40

−20

0

20

40

Freqency (Hz)

Po
w

er
Sp

ec
tru

m
(d

B)

Figure 6: Frequency spectrum of the motor torque training data (left side) and the joint position training data (right side) for
all joints. Black: Joint 1. Red: Joint 2. Purple: Joint 3. Green: Joint 4. Blue: Joint 5. Brown: Joint 6.

3 Forward And Inverse Model Identification

For robot simulation and model-predictive-control (MPC), a forward model of the robot is required which
applies the motor torque τ as input and outputs the robot position q. For robot feedforward controllers, such as
computed torque control (CTC), an inverse model of the robot is required which takes the desired position qR as
input and outputs the feedforward torque τFF. Usually, the simulation task requires a multi-step-ahead prediction
setting and the control task requires a one-step-ahead prediction. These experiments offer the possibility for both
tasks. However, we created two separate datasets from the same measurements (see Tab. 2).

For the simulation task, the data can be applied as presented in Fig. 2, Fig. ,3, Fig. 4 and Fig. 5 without
modification. The corresponding nonlinear state-space robot model is given by

q̈ = M(q)−1 (UτM −C(q, q̇)q̇− g(q)− τF(q̇)− τH(q)) (3)

as explained in the appendix A. Equation (3) shows the the acceleration q̈ is expected to be a function of robot
position q, velocity q̇ and motor torque τM. Therefore, the mapping from motor torque as input to robot position
as output, with optionally the velocity as an internal state, is well defined.

For the control task, some modifications are required. The inverse robot model is

τFF = U−1 (M(qR)q̈R +C(qR, q̇R)q̇R + g(q̇R) + τF(q̇R) + τH(q̇R)) (4)
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which is a constant mapping, in the sense that the output τFF does not rely on any previous motor torques.2
To fit the feedforward control as well as possible to the real system, it is trained on the time-shifted measured

position rather than on the reference position and on the measured torques rather than the computed torques. A
time-shift of 4ms is required to compensate for the feedback controller computation time. Additional input data is
provided for this challenging task. The input consists of the time-shifted position, velocity, and acceleration, and
the outputs are the measured motor torques, as summarized in Tab. 2.

Table 2: Summary for the separate forward and inverse model identification datasets.

Forward Model Inverse Model

Input
Motor torque τ (Nm)

Joint Position q (deg)

Joint Velocity q̇ (deg/s)

Joint Acceleration q̈ (deg/s2)

(All time-shifted)
6 Channels 18 Channels

Output Joint Position q (deg) Motor torque τ (Nm)

6 Channels 6 Channels

Simulation-mode Prediction-mode
recommended recommended

In addition to the data prepared for the identification benchmark, the dataset includes raw measurements of
every single experiment, as presented in Tab. 3. The raw data is unfiltered and given at 250Hz in contrast to the
filtered, 10Hz data prepared for the benchmark. Please state clearly if any of the following data is accessed for the
benchmark.

Table 3: Raw data for every single experiment. All data is given in high-frequency 250Hz

Raw Data

Joint Reference Position qR (deg)

Joint Reference Velocity q̇R (deg/s)

Joint Position q (deg) measured by motor resolver
Joint Position q (deg) measured by secondary encoder
Joint Velocity q̇ (deg/s) measured by motor resolver
Joint Velocity q̇ (deg/s) measured by secondary encoder
Absolute motor torque τ (Nm) (τ = τFF + τFB)
Model-based feedforward motor torque τFF (Nm)

Feedback controller motor torque τFB (Nm)

2Considering the real control architecture, the motor torque is naturally not completely discontinuous.
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4 Metrics and Figures of Merit

4.1 Forward Model Metrics

Please report the model performance on the test dataset, similar to the baseline in Fig. 7, with the measured
and estimated joint positions. Comment explicitly if prediction or simulation mode is chosen. Report all angles in
deg and torques in Nm. Exemplary figures of merit are given by Fig. 7 and Fig. 8. As for performance metrics,
apply the normalized-root-mean-squared-error (NRMSE) (5) and the R2 norm (6) and average these metrics over
all joints (9), (10). The number of joints is N = 6, the number of time steps is K = 3636 for the test data,
K = 39988 for the training data. The standard deviation regarding measured torques for each joint n is στ,n and
regarding position is σq,n.

NRMSEn =

√√√√ 1

Kσ2
q,n

K∑
k=1

(qmeas,n,k − qest,n,k)2, (5)

R2
n = 100

(
1−

∑K
k=1(qmeas,n,k − qest,n,k)

2∑K
k=1(qmeas,n,k − ( 1

K

∑K
k=1 qest,n,k))

2

)
(6)

4.2 Inverse Model Metrics

For the inverse model identification task, the metrics are similar, except motor torque is applied instead of the
position as output.

NRMSEn =

√√√√ 1

Kσ2
τ,n

K∑
k=1

(τmeas,n,k − τest,n,k)2, (7)

R2
n = 100

(
1−

∑K
k=1(τmeas,n,k − τest,n,k)

2∑K
k=1(τmeas,n,k − ( 1

K

∑K
k=1 τest,n,k))

2

)
(8)

4.3 Averaged Metrics

In both cases, inverse and forward identification, report the over all joints averaged NRMSE and R2 norm.

average NRMSE =
1

N

N∑
n=1

NRMSEn, (9)

average R2 =
1

N

N∑
n=1

R2
n (10)

5 Figures of Merit and Linear Identification Baseline

5.1 Forward Model Baseline

We apply a linear state-space model as a baseline like presented in listing 2 using the MATLAB System
Identification Toolbox [10]. To increase the performance, we apply the prior knowledge that all experiments
(including the test) start in homing position and set the standstill torque to zero. This is necessary as gravitational
and hydraulic loads act at standstill, too. Therefore, the input which compensates for these disturbances is nonzero
even if the robot does not move. Only when the brakes are closed, which never occurs in the measurements, the
input would be zero and the robot could be shut down. This effect cannot be taken into account with state-space
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models and is therefore supported by prior knowledge. Additionally, the prior knowledge is applied that the robot
obtains 12 states and that the initial state is zero. For the identification benchmark, please comment if any prior
knowledge is applied.

Listing 2: Linear Model Baseline.

1 % define ssest options

2 opt_ssest = ssestOptions ();

3 opt_ssest.Display = ’on’;

4 opt_ssest.Focus = ’simulation ’;

5

6 % zero initialize the input

7 u_train = u_train - u_train (:,1);

8

9 % define data

10 dt = 0.1;

11 id_data = iddata(y_train ’, u_train ’, dt);

12

13 % identify model

14 n_states = 12;

15 ss_model = ssest(id_data , n_states , opt_ssest);

The performance of the (zero-initialized) test data is presented in Fig. 7. Performance metrics for each joint
and on average are given in Tab. 4.

Table 4: Performance metrics of the linear model on the forward identification test data in simulation mode.

Joint Training Data Test Data
NRMSE R2 NRMSE R2

% %
q1 0.681 55.359 0.841 44.045
q2 0.844 28.744 1.169 9.54
q3 0.749 43.898 1.965 6.532
q4 0.859 26.496 0.89 23.964
q5 0.853 27.252 0.887 25.936
q6 0.829 31.567 0.952 23.87

All Joints 0.8025 35.5527 1.1173 22.3145

11



0 50 100 150 200 250 300 350
−50

0

50
q 1

(d
eg

)

0 50 100 150 200 250 300 350

0
20

q 2
(d

eg
)

0 50 100 150 200 250 300 350
−100
−50

0

q 3
(d

eg
)

0 50 100 150 200 250 300 350

−50
0
50

100

q 4
(d

eg
)

0 50 100 150 200 250 300 350
−50

0
50

q 5
(d

eg
)

0 50 100 150 200 250 300 350

−50
0
50

100

Time (s)

q 6
(d

eg
)

Figure 7: Performance of the linear model on the test data in simulation mode. Each row corresponds to one joint. Blue:
Measured joint positions. Red: Estimated joint positions.

5.2 Inverse Model Baseline

As (4) is a constant mapping in a one-step-ahead prediction setting, the baseline can be formulated as a single,
linear matrix A ∈ RN×3N . The matrix coefficients are estimated using the MATLAB Optimization Toolbox [10].
Results on the test data are presented in Fig. 8 and metrics are given in Tab. 5. Fig. 8 demonstrates that stationary
effects, such as Coulomb friction, cannot be represented by linear models at all. Note that the R2 index is even
negative in some cases. Furthermore, there is a massive range in performance, from minus 62% to plus 80%. The
dominant effects for each joint significantly differ. Gravitational loads act primarily on joints 2 and 3. Hydraulic
loads occur only on joint 2. Joints are equipped with significantly different motor types (see appendix C). The
maximum torque input of joints 1, 2, and 3 amounts to triple of the joints 4, 5, and 6 (see Fig. 2). The motor power
supply ranges from 5.5 kW to 16 kW. Simultaneously, because the load is considerably reduced, the amplitude of
motion joints 4, 5, and 6 is a multiple of the joints 1, 2, and 3 (see Fig. 3).

τ = A


q

q̇

q̈

 (11)
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Figure 8: Performance for the inverse benchmark on the test data in prediction mode. Each row corresponds to one joint. Blue:
Measured motor torques. Red: Estimated motor torques.

Table 5: Performance metrics of the linear model on the inverse identification test data in prediction mode.

Joint Training Data Test Data
NRMSE R2 NRMSE R2

% %
τ1 0.419 82.453 0.447 80.001
τ2 1.582 -48.673 1.546 -35.737
τ3 1.893 -75.514 1.964 -62.339
τ4 0.673 54.677 0.709 49.696
τ5 1.012 13.096 1.077 9.613
τ6 0.552 69.582 0.559 68.691

All Joints 1.0218 15.9368 1.0503 18.3208

13



Appendix

A Industrial Robot Model

To focus this contribution, we will only briefly summarize the model. The well-known robot model

M(q)q̈+C(q, q̇)q̇+ g(q) + τF(q̇) + τH(q) = UτM(q, q̇), (12)

consists of the pose-dependent inertia matrix M(q) ∈ RN×N , the centrifugal and Coriolis matrix C(q, q̇) ∈
RN×N , the vector of gravitational torques g(q) ∈ RN , the nonlinear friction torque vector τF(q̇) ∈ RN , the
torque vector resulting from the Hydraulic Weight Counterbalance (HWC) τH(q) ∈ RN , the diagonal gearbox
transmission matrixU ∈ RN×N ,U = diag(u1, u2, · · · , uN ) and the input torque transmitted from the electrical
motors τM(q, q̇) ∈ RN . The model is based on generalized coordinates q ∈ RN , where N stands for the number
of degrees of freedom, which are 6 for the given demonstrator. The estimation of M(q),C(q, q̇) and g(q) is
given in [6]. Details on the robot and control are given previous works [13]. A flatness-based feedforward control
is not applied, rather a model-based feedforward control based on equation (12).

A.1 Controller Design

For high accuracy applications, the robot is on the three main joints equipped with link-side angular mea-
surements (secondary encoders). The motor angle Θ actuates the gearbox, and the gearbox output angle (link
side) q is measured additionally. So gearbox deformations can be measured directly and can be compensated by
the feedback position control. The velocity control, however, is applied on the motor side for an improved system
behavior in all cases. For details, we refer to [13]. In this work, we set for simplicity q ≈ UΘ. In the dataset, the
link side sensor is employed whenever possible. This implies that gearbox deformation and backlash are included
in the measurements for the first three joints. As the hand joints are not equipped with secondary encoders, the
motor sensors are utilized.

Trajectory-
planning

Position-
controller

Velocity-
controller

Model-Based Feed
Forward Control

Robot

θ̇R

qR

τFF

τC τM

q

θ̇

−

q

−

θ̇

Figure 9: Controller design with feedforward and feedback control

The commanded motor torque is given by a PD-controller

τM(q, q̇) = τFF +P (qR − q) +D (q̇R − q̇) , (13)

with the feedforward torque τFF, the reference trajectory q̇R and the proportional and derivative diagonal gain
controller matrices P andD respectively.
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A.2 Hydraulic Weight Counterbalance

We model the HWC as a static hydraulic torque τH,S which acts only on joint 2,

τH(q) = [0, τH,S , 0, 0, 0, 0]
T
. (14)

The static hydraulic torque τH,S is generated by a hydraulic force FH,S and an orthogonal height h(q2). The
height h(q2) can be derived from geometry, as depicted in Fig. 10, which results in

Figure 10: The geometry of the Hydraulic Weight Counterbalance of KUKA KR300 R2500 ultra SE.

dl(q2) =
√

D2 + k2 − 2Dk cos(q2)− l , (15)

h(q2) =
Dk sin(q2)

l + dl(q2)
, (16)

with the distance D from joint center to HWC attachment, HWC attachment radius k, base length l = D − k and
extension length dl(q2). The hydraulic pressure p is generated by and equal to the nitrogen gas pressure in the
blatter accumulators. We apply the ideal gas law, include a compressibility factor Z, and get

p(q2) =
mNZRSTN

Vmax − dl(q2)A
, (17)

τH,S = h(q2)τS,F = h(q2) · p(q2)A, (18)

with the specific gas constant RS , the nitrogen mass mN , the nitrogen temperature TN , the maximum bladder
volume Vmax and the effective piston area A. All geometric parameters are given in the CAD model. We assume
the temperature and the compressibility factor to be constant. The nitrogen mass and the bladder volume are
identified using pressure measurements in several static joint positions.

A.3 Friction Model

We apply a nonlinear friction model based on [7, 8]. The friction model exploits an asymmetrical, viscous,
Coulomb, and degressive friction term

τF(q̇) = fasym + fvq̇+ fc tanh(sf q̇) + fa tanh(fb q̇),

with the zero drift error of friction torque fasym ∈ RN , the viscous friction coefficient fv ∈ RN , the Coulomb
friction coefficient fc ∈ RN , the sign smoothness factor sf ∈ RN and degressive friction coefficients fa ∈ RN and
fb ∈ RN . The degressive friction torque routes back to [8] and encompasses a saturation of the friction torque in
the high velocity range. Modeling this degressive friction behavior matches various measurements. Furthermore,
the Coulomb friction is approximated by sign(·) ≈ tanh(sf (·)) for a differentiable friction in the trajectory and
identification optimization algorithm. In contrast to fb, the smoothness factor sf is not a degree of freedom in the
model and we ensure sf � fb.
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C Technical Details

C.1 Dimensions and Limits

The robot workspace is presented in Fig. 11. All lengths are given inmm and angles are given in deg. Please
note that Fig. 11 applies a different zero-pose notation than the measurements. The angular difference is given by

q = [0,−90, 90, 0, 0, 0] deg. (19)

The position and velocity limits are presented in Tab. 7, using the measurement position convention. As the
velocity limits are all symmetrical, we only present the upper limits, as q̇lb,n = −q̇ub,n holds.

Figure 11: KUKA KR300 R2500 ultra SE dimensions in mm and absolute angular limits in deg. Different zero angle
definitions. Copyright by [9].

Table 7: Joint position and velocity limits. Velocity limits are symmetrical. Absolute limits are caused by electrical and
mechanical constraints [9]. In the experiments, we applied a reduced subset.

Absolute Limits Applied Limits
qlb qub q̇ub qlb qub q̇ub

deg deg deg/s deg deg deg/s

Joint 1 -147 147 84.6 -90 90 63.4
Joint 2 -50 85 82.3 -30 40 61.7
Joint 3 -202 63 79.3 -110 40 59.5
Joint 4 -350 350 122 -180 180 91.5
Joint 5 -122.5 122.5 113 -90 90 84.8
Joint 6 -350 350 175 -180 180 131.3

C.2 Hardware Layout

Figure 12 presents the basic hardware layout of the controller. Starting at the top right, an industrial real-time
computer performs the main robot tasks: the process state machine, the measurement handling, the diagnose
system, the web-based human-machine-interface, the hand-held operating device, parts of the control loop, as well
as error-detection andmachine supervision. The real-time computer hosts anOPC-UA server, which communicates
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bidirectionally with a Matlab OPC-UA client (light blue line). The Matlab code performs non-real-time tasks such
as trajectory generation, robot model identification, or machine learning applications. Matlab is also the interface
for measurement post-processing and file management. The industrial computer also hosts a second non-real-time
operating system, Windows 10, on which the programming and diagnosis can be done. Other than for diagnosis,
the Windows-based operating system does not interfere with the run-time tasks of the robot. Cycle time of main
tasks is given in Tab. 8. The main components presented in Fig. 12 are listed in Tab. 9.

Figure 12: Hardware configuration. The corresponding picture is given in Fig. 1, right side. Copyright by [5].

The dark blue lines in Fig. 12 represent the industrial bus protocol, called POWERLINK by B&RAutomation,
over which all run-time information is communicated. The green lines on the bottom represent the motor signals,
such as motor temperature sensor, motor brake control, and motor position and velocity signal. Not displayed
in Fig. 12 are three components: The signals from the secondary encoders (link side position sensors) to the
motor power inverters, the 3-phase power connection from the inverters to the motors, and the main power cables
connecting inverters and power supply.

Following the industrial bus from the real-time computer (dark blue line, top), a safety programmable logic
controller (PLC) is connected. This PLC is safety-certified, independent of all other hard- and software, and can
shut down the main power supply in all cases. It explicitly handles hardware emergency stops and supervises the
robot cell. It is the only component that cannot be reconfigured without advanced authorization.

The bus signal is sent from the safety PLC to the main power supply (left side, grey), which transforms
the laboratory power supply corresponding to the motor inverter requirements. Parallel to the main power, the
industrial bus signal is sent to all motor inverters, which locally compute the position, velocity, and current feedback
control, record measurements, and read the secondary encoders. The code of the motor inverters, as well as the
information which is sent over the bus system, can be adopted.

All motor inverters are designed for double-axis. For joints 1, 2, and 3, only one high-power output is used.
The other side of the double-axis is required for additional sensor integration and applied for software computation
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directly on the inverter. Joints 4, 5 and 6 operate on double-axis, with Joint 4 and 5 on a single device. The other
side of the double-axis device for joint 6 is unused.

Table 8: (Deterministic) computation time of main software components [4].

Task Deterministic Time

OPC-UA server no between 4ms and 10 s,
depending on task requirements
and data volume. Bidirectional.

State machine yes 4ms

Diagnose system yes 4ms

Measurement handling yes 4ms, can be set to 0.8ms

Position feedback control yes 0.8ms

Velocity feedback control yes 0.2ms

Motor current feedback control yes 0.05ms

Table 9: Main components of the robot control [3, 4]

Component Description

1x Real-Time Computer Automation PC 910 series with Intel Core i7 6820EQ,
QM170 chipset, 128 GB CFast memory, 8 GB DDR4 RAM,
POWERLINK managing node, 2 MB SRAM battery buffered

1x Power Supply ACOPOSmulti series with 3x 400 VAC input voltage,
750 VDC link voltage, 60 kW continuous power

3x Inverter Joint 1, 2, 3 ACOPOSmulti3 series dual-axis module
with 750 VDC bus voltage, 55 A peak current,
22 A continuous current, 16 kW continuous power,
24 VDC and 2.1 A for holding brake

2x Inverter Joint 4, 5, 6 ACOPOSmulti3 series dual-axis module
with 750 VDC bus voltage, 18.9 A peak current,
7.6 A continuous current, 5.5 kW continuous power,
24 VDC and 1.1 A for holding brake

C.3 Sensor Specification

Table 10 shows the sensor types and corresponding resolutions for all joints. We refer to the software
resolution as the smallest incremental change that can be detected in the software. The real sensor uncertainty is
greater: First of all, the sensor head, the measurement ring, and the resolver depend on manufacturing tolerances.
Considering the manufacturer’s specifications, however, these uncertainties are not significant. Second, for both
sensors, we define the resolution on the link side. This implies for the motor-side mounted resolvers, that the
effective resolution depends on the gearbox factors. So this estimated effective resolution is corrupted by gearbox
deformation and backlash, which sums up to an approximate error range of 0.01 deg to 0.05 deg (depending on
the trajectory and payload, see [13, 14]). All sensors are low pass filtered in first order, with a cutoff frequency of
1000Hz for both the secondary encoders and for the motor resolves.
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Table 10: Secondary encoders (SE) [1] and motor resolvers (RE) [11]. All resolutions are given for the link side. Software
resolution is the smallest incremental change that can be detected. Effective resolution accounts for additional uncertainties,
see main text.

Sensor Type Software Effective
Resolution Resolution
deg deg

SE Joint 1 WMR-301-0507-01-S03 (Ring) 4.33 · 10−6 5 · 10−6

WMR-301.12-0507-0.20-9-S01 (Head)
SE Joint 2 WMR-301-0413-01-S03 (Ring) 5.32 · 10−6 6 · 10−6

WMR-301.12-0413-0.10-9-S01 (Head)
SE Joint 3 WMR-301-0339-01-S03 (Ring), WMR-301.12-0339-0.125-9-S01 (Head) 6.48 · 10−6 7 · 10−6

WMR-301.12-0339-0.125-9-S01 (Head)
RE Joint 1 1FK7-101-5AY71-1SY3-Z 85.5 · 10−6 5 · 10−2

RE Joint 2 1FK7-103-5AY71-1SY3-Z 82.2 · 10−6 5 · 10−2

RE Joint 3 1FK7-103-5AY71-1SY3-Z 87.1 · 10−6 5 · 10−2

RE Joint 4 1FK7-063-5AF71-1SY3-Z 99.4 · 10−6 5 · 10−2

RE Joint 5 1FK7-063-5AF71-1SY3-Z 91.7 · 10−6 5 · 10−2

RE Joint 6 1FK7-063-5AF71-1SY3-Z 240 · 10−6 5 · 10−2
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